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Retrieval of similar anatomical structures of brain MR images across patients would help the expert
in diagnosis of diseases. In this paper, modified local binary pattern with ternary encoding called
modified local ternary pattern (MOD-LTP) is introduced, which is more discriminant and less
sensitive to noise in near-uniform regions, to locate slices belonging to the same level from the brain
MR image database. The ternary encoding depends on a threshold, which is a user-specified one
or calculated locally, based on the variance of the pixel intensities in each window. The variance-
based local threshold makes the MOD-LTP more robust to noise and global illumination changes.
The retrieval performance is shown to improve by taking region-based moment features of MOD-
LTP and iteratively reweighting the moment features of MOD-LTP based on the user’s feedback.
The average rank obtained using iterated and weighted moment features of MOD-LTP with a local
variance-based threshold, is one to two times better than rotational invariant LBP (Unay, D., Ekin,
A. and Jasinschi, R.S. (2010) Local structure-based region-of-interest retrieval in brain MR images.
IEEE Trans. Inf. Technol. Biomed., 14, 897-903.) in retrieving the first 10 relevant images.
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1. INTRODUCTION

The ever-increasing volume of images produced from different
sources, the inadequacy of human language alone to describe
image contents that are visually recognizable and the
impracticality of manually indexing these images have led to
the rise of content-based image retrieval (CBIR) techniques
[1-3]. With the maturation of computing technology and the
high speed processor, indexing of images can be done using
features like color, texture, shape, etc. instead of key words. One
of the most challenging parts of developing CBIR is extracting
the salient features of images that can be used to characterize
edges, textures and contours of interest. This is even more
difficult with respect to the medical field, especially in brain

MR images due to challenges like MR inter- and intra-patient
intensity variations, misalignment of images, etc. [4, 5]. Local
binary pattern (LBP) has been recently proved useful in
describing medical images, which has a low computational
complexity and a low sensitivity to changes in illumination.
Traditional LBP is formed by taking the difference between the
gray value of a pixel (g.) and the gray values of P pixels (gx) in
a local neighborhood. The LBP has been applied in various
applications like face recognition, fingerprint identification,
texture classification, MR brain image retrieval, etc. [6-9].
Several variants like uniform binary pattern, elliptical binary
pattern, median binary pattern, center-symmetric LBP [10-13]
etc. are depicted in the literature. In order to reduce sensitivity
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to noise, a three-valued coding, local ternary pattern (LTP) is
proposed [14]. The idea of a three-valued coding is proposed
also in [5, 16], where a fuzzy thresholding function is used
to make the LBP operator more robust to noise. In this paper,
a variant of LBP, modified local ternary pattern (MOD-LTP),
which is more discriminant and less sensitive to noise in the
uniform or near-uniform regions, is introduced as a texture
descriptor for brain MR image retrieval. MOD-LTP is a better
texture descriptor as it captures information from every pixel
in the local neighborhood. A comparison has been made with
traditional LBP as well as MOD-LBP in terms of accuracy of
retrieval and sensitivity to noise.

2. METHODOLOGY

The overview of the image retrieval scheme is shown in
Fig. 1. MOD-LTP is computed using a window of size w. The
normalized histogram of the resultant image is taken as feature
vectors for similarity computation. The images in the database
are ranked based on the Bhattacharya distance between query
and database images. The average rank and accuracy for a set
of query images to locate similar images are calculated. The
moment features of MOD-LTP are computed spatially over
an angularly partitioned area and performance of the retrieval
system is evaluated using the distance function of moment
features. To achieve an optimum performance, the moment
features of MOD-LTP are reweighted based on the relevance
of individual features in the retrieval process.

2.1. Local binary pattern, modified local binary pattern
and modified local ternary pattern

LBP is formed by taking the difference between the gray value
of a pixel (g.) and the gray values of P pixels (g;) in a local
neighborhood.

P—1

LBP =) s(gi — 82, {

i=0

sx)=1, x>0
0,x <0 } &y

Here, a P-bit binary number is multiplied by a power of
2 to get an LBP code. LBP around a circular neighborhood
with P pixels and radius R is denoted as LBPp g in which
the coordinates of the neighborhood pixels, g; (i = 0,1,
2,..., P — 1) around the center pixel g.(x., y.) are (x, +
Rcos(2mi/P), yo — Rsin(2wi/P)). The gray values of the
neighboring pixels that are not in the image grids can
be estimated using bilinear interpolation. The signs of the
differences obtained using Equation (1) in a neighborhood are
interpreted as a P-bit binary number, resulting in 27 distinct
values in the LBP code. One way to eliminate the effect of
rotation is to perform a bitwise shift operation on the binary
pattern P — 1 times and assign the smallest decimal equivalent
to the central pixel which is referred to as rotational invariant
LBP(LBP;"’ r)- We refer to LBPf,ff‘Ig as rotational invariant LBP
with a limited number of transitions [13].

LBP has been proved to be invariant to monotonic gray scale
changes, intensity inhomogeneity, etc. [17], but it is sensitive to
noise and ignores the magnitude of gray level differences. The
definition of the LBP is modified by incorporating gray scale
information as

P—1

1 2
MOD — LBP = — Z; s(gi — go)(gi — )%, 2)

where p is the mean of the P neighborhood pixels and
(s(x) = é’i i 8) [18]. In MOD-LBP, the weight assigned

to each binary number in the neighborhood is the squared
difference between intensity of that pixel and the mean intensity
of the neighboring pixels. To make it robust to noise in
the uniform or near-uniform region, P-bit binary pattern is
generated using a three-value encoding, based on a global as
well as a local threshold o. The ternary pattern so obtained is
split into two binary patterns in which the first binary pattern is
obtained by considering positive components and making the
negative component zero. The second binary pattern is obtained
by considering the negative components and making the positive
components as zero. The resultant binary pattern is obtained
by concatenating the two binary patterns. The resultant image
formed by assigning the real number equivalent of the weighted
binary number to the central pixel is termed as MOD-LTP and
is given in Equation (3).

P-1

1
MOD-LTP = — ; s(gi — g)(gi — W%,
1,8 — g > o,
where s(gi—g) = 0,]g — gl <o, 3)
—1,8 — g < —o.

In traditional LTP, the threshold is calculated globally, which
is sensitive to global illumination changes. In MOD-LTP, the
threshold is chosen locally based on the variance of the pixel
intensities of the neighboring pixels in addition to the user-
specified value. Since the threshold is based on the local variance
and the MRI is locally smooth, it is invariant to monotonic gray-
level change and it can resist intra-image illumination as long
as absolute gray-scale values are not much affected. As every
pixel in the local neighborhood is involved in the MOD-LTP
computation, the method is invariant to some basic geometric
transformations and intensity variations with respect to that
neighborhood. The robustness of the local measure to handle
intensity-related problems is shown in the result session. The
pixel numbering of the neighborhoods of size 3 and 5 used in
the LBP and MOD-LTP computation are shown in Fig. 2.

2.2. Moment invariants

A suitable threshold on MOD-LBP captures boundaries of
some structures that the human visual system tends to use
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FIGURE 1. Block diagram of image retrieval scheme.
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FIGURE 2. Pixel numbering of neighborhood pixels (a) for LBP and MOD-LTP computation with window size 3 (b) for LBP computation with
window size 5 (¢) for MOD-LTP computation with windowsize 5.
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in identification. The region-based moment features, which is
invariant to translation and scaling, obtained from MOD-LTP
is used as features for computing similarity between images.
These features that are invariant to translation and rotation
have proved to be the most useful because of the variability
in the orientation of anatomical regions within the brain across
subjects. Two-dimensional moments of order (p + ¢) for digital
image f(x, y) is defined to be

Mpg =Y xPyf(x,y), “
q

p

where, p,q = 0, 1, 2, etc. [19]. To attain a Translation Invariant
measure, raw moments are replaced by central moments, which
is defined as

Hpg = ZZ(X =Py =y fx,y), (5)

where x = mio/moo, y = mo1/moo.
The scaling invariant may be obtained by further normalizing

Hepq aS
Hpq/((p+q)/2+1)
Npg = Moopq . (6)

Using this, a set of seven rotational scaling & translational
invariant features (RST) is derived by Schalkoff [20]. The
relative difference in magnitude of the eigenvalues is thus an
indication of the eccentricity of the image, or how elongated
it is. The eccentricity is /T — A,/A;, where A, A, are the
eigenvalues of the co-variance matrix. We have used central
moments, RST features and eccentricity for image comparison.

2.3. Feature extraction

The MOD-LTP is computed using Equation (3) and the pixel
value of MOD-LTP is brought into the range of integer values
[0 L;]. Normalized histogram of resultant images is taken
as feature vectors and the Bhattacharya distance is used for
defining similarity between the query image and database
images. To preserve similarity attributes between anatomical
similar structures of the query slice, and member slices from
the database, we make use of the fact that brain slices are quasi-
symmetric across the left and right hemispheres. In the sequel,
we extract moment features of MOD-LTP over an angularly
partitioned grid with respect to a reference line (line with respect
to which 2D brain image exhibits maximum symmetry). The
central moments of orders 1-25, eigenvalues of the central
moments, RST features [19] obtained from the central moments
and the eccentricity are calculated for each partitioned grid.
For m features defined at n spatial locations, the LBP image is
represented using a collection of m spatial vectors, each of size
n x 1. For a query image Q, we define the feature matrix to be

FIALD F9(1L2) £9(1,m)
IR f12.2) £9(2. m)
D f9n.2) £9(n, m)

and the feature matrix of the database images as

flan fla,2) f1a,m
» flen e £, m
Flo ) fl@.2) £l (0, m)

i=12...,N.

The distance matrix is found by calculating the distance
between feature vectors of the query image F¢ and those in the
database using the Euclidean distance function. The entries in
the distance matrix correspond to different features and may
vary within a wide range. To ensure equal emphasis for all
vectors, entries in the distance matrix are brought into the range
[—1 1]. The distance value between the query and the ith image
in the database is

m

A, @ = | DY (FIk, j) — Fk j)> (7

j=1 k=1

This distance value vector so obtained is arranged in ascending
order and Precision-Recall is then calculated.

2.4. Reweighting the features

As one visual feature is not sufficient to describe different
aspects of the image content, multiple features are required
to characterize the content of images. The basic method uses
equal weights on the assumption that different features have the
same importance in the process of retrieval. But in most cases,
they do not have the same importance. The impact of certain
features is very low compared with other features. Therefore,
it is absolutely necessary to find the impact of the individual
features on the retrieval process to get a better result. To get
a higher system performance, methods for multiple features
combination are proposed [20, 21]. The general idea is to assign
higher weights to a feature that is more important for the query
image. In order to observe the effect of an individual feature,
a single feature aggregation distance measure (SFAD) between
the query and the ith image in the database using the jth feature,

D (Fak, j) — Fl (k. )2,

k=1

a1, Q) =

j=1,2...,mis calculated.

The corresponding distance vector between the query
image Q and N images in the database using the jth
featureis DY) (Q) = [dYV (I}, Q),dV (I, Q) ...dV Iy, Q)].
We arrange the distance vector in ascending order and
corresponding indices of the images in the database are found
out. In accordance with these indices, the images in the
database are arranged as 11(ej) = [Ir(lj), Ir(zj), e I,(,i)] called the
retrieved set.
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FIGURE 3. Different classes of T2-weighted axial MR slices.

We define the retrieval index (RI): n; to be the number of
images to be traversed in the retrieved set to encounter the /th
relevant image, [ = 1,2..., L corresponds to the given query.
The precision for the /th relevant image is defined as

.
P = - ®)

The recall of the /th relevant image is defined as

Lo
) —
RV = —. )

Therefore, the precision and recall of query image Q using
the jth feature is PU)(Q) = [P(’) Pn(é), ...,Pn(i)], Py >

nl » nl
PY > ... > PY and RV(Q) = [RY,RY, ..., R{].
Consequently, the average precision based on the jth feature

. L (j)
is AvgPV) = Zl:l%,j = 1,2,..., m. The features having

higher value of AvgP"’ will have a more dominant role in
retrieving the relevant images. Hence it is appropriate to weigh
each feature vector based on the respective AvgP/) value
prior to calculating the distance matrix. Based on the value of
Avg PY), each feature will be given a weight and new average
precision, Avg P is calculated by integrating m features. This
repeats and new average precision Avg P is calculated each time
till it attains an optimum value.

3. PERFORMANCE EVALUATION
3.1. Average rank and accuracy

For a set of queries, the average rank and accuracy of the
retrieval is calculated based on the images retrieved. If the
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relevant images are in a succeeding order without the absence of
irrelevant images in between, the corresponding query image is
assigned a rank of 1. An ideal retrieval algorithm will therefore
yield arank of 1 for all the Q query images. In practice, however,
each of the Q query images will get a different rank depending
upon the number of images retrieved. An average rank, which
shows the closeness of the system performance, is calculated
using the formula

Ng

1 Ng(Ng — 1)
A k =— RR———, 10
verage ran N <§ > ) (10)

TABLE 1. The dissimilarity score between original and
degraded images.

Bias field
Method Window size 20% 40%
Histogram 1.28 x 107! 1.3 x 107!
LBP(8,1) 3 26x1073  4.1x1073
MOD-LBP(8,1) 3 2x1073 2.6x1073
MOD-LTP(8,1) 3 1.8x1073 2.1x1073

where Ng represents the number of relevant images and
R; represents the rank at which the ith relevant image is
retrieved [22].

The accuracy of the retrieval system for a set of queries is
also calculated using the formula

Acc = (1 —

In the results section, we will illustrate how the average ranking
and accuracy are made use of in classifying the retrieval
performance at different levels.

No of irrelevant images retrieved

) x 100, (11)

Total no of irrelevant images

4. RESULTS

The experiment is performed on T1 and T2 weighted
clinical datasets as well as the Brainweb simulated database
(http://www.bic.mni.mcgill.ca/brainweb).

The slices (T2 weighted) used in this work were acquired on
a 1.5 Tesla, General Electric (GE)—Signa HDxt MR Scanner
from Pushpagiri Medical College Hospital, Tiruvalla, Kerala,
India. Axial, 2D, 5 mm thick slice images, with a slice gap of
1.5 mm were acquired with the field of view (FOV) of range 220

TABLE 2. The average rank of retrieving the first six relevant images using the histogram of different LBP variants.

Number of relevant images retrieved

LBP variants Levels Measure 1 2 3 4 5
LBP (window size 3) L1 Average Rank 1.11 1.61 2.26 3.03 3.73
Accuracy % 99.92 99.21 98.19 96.93 96.06
L2 Average Rank 1.13 1.20 1.29 1.33 1.36
Accuracy % 99.90 99.80 99.65 99.65 99.65
L3 Average Rank 1.46 1.54 1.77 2.29 2.78
Accuracy % 99.66 99.55 99.10 97.92 97.25
L4 Average Rank 1.31 1.34 1.40 1.45 1.51
Accuracy % 99.77 99.72 99.63 99.53 99.44
MOD-LBP (window size 3) L1 Average Rank 2.22 2.44 2.81 3.33 3.98
Accuracy % 99.13 98.82 98.19 97.24 96.06
L2 Average Rank 1.07 1.20 1.36 1.47 1.59
Accuracy % 99.95 99.75 99.51 99.41 99.21
L3 Average Rank 1.31 1.42 1.62 1.77 1.97
Accuracy % 99.78 99.61 99.27 99.10 98.71
L4 Average Rank 1.19 1.31 1.35 1.42 1.50
Accuracy % 99.86 99.67 99.67 99.53 99.39
MOD-LTP (threshold based on local variance) L1 Average Rank 1.33 1.61 1.96 2.28 2.89
Accuracy % 99.76 99.37 98.82 98.42 96.93
L2 Average Rank 1.00 1.07 1.16 1.27 1.37
Accuracy % 100.00 99.90 99.75 99.56 99.41
L3 Average Rank 1.15 1.27 1.44 1.54 1.68
Accuracy % 99.89 99.72 99.44 99.38 99.10
L4 Average Rank 1.00 1.03 1.08 1.14 1.19
Accuracy % 100.00 99.95 99.86 99.77 99.72
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to 250 mm. The T2 (TR/TE (eff.) of 3500 —4500/85—105 (eff.)
ms) images were collected using fast spin echo (FSE) sequences
with a matrix size of 320 x 224 (Frequency x Phase) and a NEX
(Averages) of 2.

We have categorized brain unregistered MR images of
different persons into four levels and evaluated the performance
of the method (Fig. 3).

L1. The foramen magnum (The cerebellum with paranasal
sinus is present).

L2. Above the fourth ventricle (Caudate nucleus, thalamus,
basal ganglia are seen).

L3. Mid-ventricular section.

L4. Above the ventricle.
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FIGURE 4. Time for calculating moments of different order.
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To test the robustness of MOD-LTP with respect to
intensity variations simulated bias fields from the BrainWeb
MR simulator (20 and 40%) are used (http://www.bic.
mni.mcgill.ca/brainweb). These bias fields provide smooth
variations of intensity across the image. As the MOD-LTP is
calculated locally, intensity inhomogeneity has less sensitivity
to it because the bias field in an MRI is locally smooth.
The degree of dissimilarity between MOD-LTP of the original
and the degraded images (100 images randomly chosen)
are computed using the Bhattacharyya distance, d = 1 —
S H /p(Dq (@), where p and q are normalized histograms
with L1-bins. The average dissimilarity scores fall in the
range of [0 1], where 0 means that all original images and
their degraded images are perfectly similar. Table 1 shows the
effect of the bias field in similarity computation between the
original images and the degraded images. It shows that the
local measure is useful in handling intensity-related problems
and, in particular, MOD-LTP with a local threshold is robust
to global illumination changes. As the bias field increases,
the dissimilarity increases and MOD-LTP with window size
3 shows less dissimilarity compared with other variants.

The performance of the retrieval system is evaluated by
choosing a set of T1-weighted BrainWeb simulated images (0%
noise and 0% inhomogenetiy). The average rank and accuracy
are calculated based on the histogram of different LBP variants.
Table 2 illustrates the comparison of LBP, MOD-LBP and
MOD-LTP in retrieving the first five relevant images. It reveals
that the MOD-LTP with a window size 3 gets 100% accuracy
for retrieving the first relevant image for levels L2 and L4, and
99% for L1 and L3.
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FIGURE 5. Average precision vs. iteration for (a) L1, (b) L2, (¢) L3, (d) L4.
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4.1. Moments of MOD-LTP

To improve the accuracy of the retrieval system, the MOD-LTP
computed on the clinical dataset using Equation (3) is divided
into different angularly partitioned regions. For each region,
the features, central moments of orders 1-25, RST invariant
features obtained from the central moments and the eccentricity
are extracted as outlined in section II.C.

—_
L

20.00

18.00
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12.00

Average Rank

10.00
8.00
6.00
4.00
2.00

0.00

This identifies the boundary of the homogeneous region and
it reduces the time complexity of calculating moments of higher
order. Figure 4 shows the time taken for calculating moments
of different orders of the MOD-LBP image and the MOD-
LTP image with a threshold 0.1. As the order of the moments
increases, the time complexity for extracting moments also
increases. The rate at which the time increases is less in MOD-
LTP when compared with MOD-LBP. It is shown that the
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1 2 3 4 5 6 7 8 9 10

@ Threshold 0.01 | 3.61 | 4.63 | 5.51 | 6.68 | 7.94 | 9.30 |11.19|12.83|14.54|16.23

@mgu Threshold 0.01 | 2.94 | 5.53 | 7.83 | 9.92 (11.86(14.23|17.17|20.54|23.60|26.74

=== Threshold 0.02 | 3.17 | 4.83 | 6.03 | 7.34 | 8.51 | 9.96 |11.55|13.35|15.25|17.18

=== Threshold 0.02 | 2.75 | 5.28 | 7.06 | 8.91 |10.80|12.99(14.98(17.31|19.81|22.33|

@ Threshold 0.03 | 3.13 | 5.00 | 6.12 | 7.15 | 8.35 | 9.45 |10.63|11.96|13.45|15.17

w=fe==Threshold 0.03 | 2.56 | 4.94 | 7.46 |10.39(12.96|15.68|18.64|21.73|24.89/28.61

@i Threshold 0.04 | 1.48 | 2.09 | 3.01 | 3.89 | 4.76 | 5.67 | 6.54 | 7.47 | 8.47 | 9.52

ey Threshold 0.04 | 3.13 | 5.25 | 7.60 |10.58|13.61|16.57(19.38(22.14|25.21|28.41,

@i Threshold 0.05 | 1.43 | 1.85 | 2.32 | 2.96 | 3.59 | 4.33 | 5.33 | 6.34 | 7.39 | 8.47

@i Threshold 0.05 | 2.44 | 6.00 | 8.83 (10.61(12.93|15.71/18.8522.09|25.50|29.57

w==@==Threshold 0.06 | 2.22 | 2.59 | 3.03 | 3.64 | 4.28 | 5.12 | 5.89 | 6.68 | 7.75 | 8.73

@=@==Threshold 0.06 | 3.06 | 6.25 |10.38|14.25(17.61|21.73|26.02|30.30|34.71/39.97

@ Threshold 0.07 | 1.70 | 2.48 | 3.03 | 3.76 | 4.40 | 5.03 | 5.70 | 6.41 | 7.18 | 8.05

@ Threshold 0.07 | 2.25 | 5.53 | 8.54 (11.27|14.19|17.69|20.96|25.06|29.55|34.40

@ Threshold 0.08 | 1.48 | 2.17 | 2.70 | 3.27 | 3.84 | 4.36 | 4.94 | 5.54 | 6.15 | 6.81

@ Threshold 0.08 | 3.00 | 5.69 | 9.04 |11.89(15.14(18.13|22.06|26.98|32.51/38.09

Threshold 0.09 | 1.30 | 1.89 | 2.29 | 2.76 | 3.17 | 3.55 | 3.94 | 4.41 | 4.86 | 5.33

Threshold 0.09 | 2.75 | 4.75 | 6.81 | 9.08 |11.56|14.34/17.51/|20.57|23.65(26.87

@ Threshold 0.10 | 1.30 | 2.04 | 2.49 | 2.90 | 3.26 | 3.64 | 4.02 | 4.40 | 4.80 | 5.24

@ Threshold 0.10 | 5.63 | 7.78 | 9.88 |12.45(15.18|17.66|20.38|23.20|26.12(29.74

No of images retrieved

—
(2]
~

25.00

20.00

15.00

Average Rank

10.00

5.00

0.00

1 2 3 4 5 6 7 8 9 10

No of images retrieved

—~
o
~

4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

Average Rank

1 2 3 4 5 6 7 8 9 10

@ Threshold 0.01 | 1.87 | 2.37 | 2.87 | 3.74 | 4.66 | 5.52 | 6.44 | 7.32 | 8.43 | 9.73

@ Threshold 0.01 | 1.00 | 1.05 | 1.09 | 1.18 | 1.26 | 1.34 | 1.42 | 1.51 | 1.62 | 1.75

e=fj==Threshold 0.02 | 1.39 | 2.52 | 3.38 | 4.14 | 5.37 | 6.43 | 7.49 | 8.56 | 9.75 |10.97

=== Threshold 0.02 | 1.06 | 1.10 | 1.13 | 1.17 | 1.20 | 1.29 | 1.37 | 1.48 | 1.58 | 1.70

@ Threshold 0.03 | 1.30 | 2.04 | 2.72 | 3.27 | 3.91 | 4.69 | 5.60 | 6.58 | 7.80 | 9.23

@sfe==Threshold 0.03 | 1.00 | 1.05 | 1.10 | 1.17 | 1.24 | 1.31 | 1.40 | 1.49 | 1.58 | 1.68

@i Threshold 0.04 | 1.39 | 2.13 | 2.65 | 3.30 | 4.31 | 5.46 | 6.69 | 7.98 | 9.29 |10.80

@i Threshold 0.04 | 1.24 | 1.37 | 1.46 | 1.64 | 1.79 | 1.93 | 2.09 | 2.25 | 2.40 | 2.57

@=jie== Threshold 0.05 | 1.87 | 4.00 | 5.68 | 7.20 | 8.77 |10.38|12.17|14.08|16.28|18.60

@i Threshold 0.05 | 1.08 | 1.21 | 1.30 | 1.46 | 1.60 | 1.81 | 2.00 | 2.19 | 2.36 | 2.52

@==@==Threshold 0.06 | 1.96 | 3.09 | 4.39 | 5.79 | 7.18 | 8.62 |10.42|12.44|14.93|17.41

@=@==Threshold 0.06 | 1.26 | 1.61 | 1.79 | 2.08 | 2.38 | 2.62 | 2.85 | 3.06 | 3.27 | 3.46

@i Threshold 0.07 | 1.74 | 3.22 | 4.17 | 5.25 | 6.63 | 8.12 | 9.99 |12.15|14.40|17.22

@ Threshold 0.07 | 1.22 | 1.36 | 1.49 | 1.67 [ 1.91 | 2.13 | 2.33 | 2.57 | 2.82 | 3.05

@ Threshold 0.08 | 1.96 | 2.87 | 4.33 | 6.13 | 7.99 | 9.78 |11.81|14.21|16.75|19.21

@ Threshold 0.08 | 1.16 | 1.23 | 1.34 | 1.52 | 1.68 | 1.84 | 2.00 | 2.21 | 2.40 | 2.61

Threshold 0.09 | 1.78 | 3.24 | 4.97 | 6.26 | 7.81 | 9.32 |10.99|12.89|14.82|16.87

Threshold 0.09 | 1.16 | 1.25 | 1.42 | 1.56 | 1.74 | 1.89 | 2.01 | 2.15 | 2.31 | 2.51

@ Threshold 0.10 | 1.87 | 3.52 | 5.33 | 6.89 | 8.64 |10.33|12.48|14.68|16.89|19.01

@ Threshold 0.10 | 1.18 | 1.38 | 1.60 | 1.78 | 1.95 | 2.16 | 2.39 | 2.65 | 2.93 | 3.20

No of Images retrieved

No of images retrieved

FIGURE 6. The average rank of set of queries with different threshold in each classes. (a) L1, (b) L2, (¢) L3, (d) L4.
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TABLE 3. The comparison of different LBP variants in terms of average rank in retrieving first 10 relevant images.
Number of relevant images retrieved

Class Method 1 2 3 4 5 6 7 8 9 10

L1 LBPI’J{R [5] 247 53 6.82 853 10.1 11.5 13.1 15.33  18.01 209
LBP,’J’;‘je2 253 553 7.06 8.66 10.2 11.8 13.7 15.77 17.86 20
Histogram of MOD-LBP 273 336 4.04 5.06 6.32 7.75 929 11 12.85 1491
Weighted Moments of MOD-LBP 1.48 2.09 301 389 476 5.67 6.54 747 8.47 9.52
Weighted Moments of MOD-LTP (threshold 0.12)  1.17 193 228 2.65 3.09 3.49 384 419 454 493
Weighted Moments of MOD-LTP (local variance 143 185 245 3.04 3.63 4.33 5.11 5.94 6.84 8.9

based threshold)

L2 LBP,’,{R [5] 1.56 297 373 455 5.35 6.03 6.71 7.39 8.15 9.11
LB P;’;Ljez 1.81 240 3.16 3.87 448 5.08 5.76 6.67 7.63 8.58
Histogram of MOD-LBP 1.69 3.09 381 450 5.20 5.86 6.55 7.15 7.95 8.79
Weighted Moments of MOD-LBP 1.63 275 354 419 480 5.45 6.16 6.91 7.69 8.56
Weighted Moments of MOD-LTP (threshold 0.12) 1.87 2 239 279 3.23 370 426  4.88 5.51 6.16
Weighted Moments of MOD-LTP (local variance 1.68 2.06 2.60 3.10 3.47 4.01 4.63 5.52 6.64 8.08

based threshold)

L3 LB P,’J{R [5] 5.8 6.86 791 945 1038 12.6 14.5 16.63 19.01 21.69
LB PI’,’;L;QZ 7.26 8.03 9.08 10.4 11.6 12.8 14.1 16.03 18.01 20.26
Histogram of MOD-LBP 373 473 588 7.05 8.28 9.55 11.1 12.69 1445 16.52
Weighted Moments of MOD-LBP 1.52 220 3.01 3.93 5.14 6.33 7.49 872 998 11.30
Weighted Moments of MOD-LTP (threshold 0.12) 1.87 237 2.87 3.74  4.66 5.52 6.44 732 8.43 9.73
Weighted Moments of MOD-LTP (local variance 1.83 239 296 3.80 4.77 5.88 7.01 8.24 9.58 11.16

based threshold)

L4 LB P{,’;R [5] 1.64 195 226 254 281 3.10 3.40 372 4.05 4.38
LBPI’J’;‘;?2 1.59 1.86 2.05 222 242 2.61 2.83 3.07 3.34 3.62
Histogram of MOD-LBP 1.32 155 1.70 1.83 1.98 2.14 2.30 246  2.65 2.85
Weighted Moments of MOD-LBP 1.06 1.13 123 1.34 1.44 1.56 1.68 1.84 1.99 2.15
Weighted Moments of MOD-LTP (threshold 0.12) 1.00 1.05 1.09 1.18 1.26 1.34 1.42 1.51 1.62 1.75
Weighted Moments of MOD-LTP (local variance 1.48 157 1.65 1.76 1.87 2.01 2.16 2.37 2.58 2.79

based threshold)

time taken for extracting moments of order 21 using MOD-
LTP is 0.6 s, while that of MOD-LBP is 2.3 s. The similarity
between the query and the target is computed using a Euclidean
distance measure based on individual features. It is observed
that each of the 34 features listed exhibits a varying degree
of performance with reference to the average rank. Since the
presence of some features degrades the overall performance
of the retrieval, we reweighted the features based on the
reweighting procedure. Figure 5 shows the average precision
of randomly chosen images in each class after applying the
reweighting algorithm. It is observed that the average precision
increases from25t090% inL1,22t048% inL.2,30t0 55% in L3
and 50 to 90% in L4.

Figure 6 shows the average rank of different level images
based on various thresholds. It shows a better average rank
which corresponds to a threshold of 0.1 in L1, 0.02 in L2, and
0.03 in L3 and L4.

Table 3 gives the comparison between various LBP variants
in retrieving the first 10 relevant images in terms of average

rank. Histogram-based MOD-LBP performs better than LBP
[5]. The moment invariant features extracted from the angularly
partitioned grid of MOD-LTP improve the performance of
the retrieval system. A further improvement is achieved by
reweighting the moment features of MOD-LTP on proper choice
of the threshold and a local variance-based threshold.

The top five images retrieved corresponds to a randomly
chosen image in each level based on MOD LTP with a threshold
0.01 are shown in Fig. 7.

The accuracy of the method is tested on a simulated T2-
weighted brain dataset (1 mm thickness, 0% noise and 0% inten-
sity non-uniformity; http://www.bic.mni.mcgill.ca/brainweb).
The MOD-LTP image is formed using (1) and (2) corresponding
to different user-specified thresholds after normalizing the
image in the range [—1 1]. As discussed in section II,
the moment features are extracted from MOD-LTP and the
average rank and accuracy are calculated. The traditional
LBP is compared with iterated and weighted moments of
MOD-LTP with a threshold 0.2. It is observed that MOD-LTP
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FIGURE 7. The first five images retrieved from each class.
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FIGURE 8. The average rank of retrieving 10 relevant images in different levels based on traditional LBP and iterated and weighted Moments of
MOD-LTP with threshold 0.2 and windowsize 3. (a) L1, (b) L2, (c¢) L3, (d) L4.
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is better than traditional LBP in terms of average rank for
retrieving the first 10 relevant images. The comparison is given
in Fig. 8.

The average ranks for retrieving 10 relevant images using
moment features of MOD-LTP are 1.35in L1, 1.42in L2, 1.77
in L3 and 1.02 in L4, while those of histogram-based traditional
LBPare 1.55inL1,3.4inL2,5.39in L3 and 6.07 in L4. Figure 8
shows that the average rank using moment features of MOD-
LTP is 1.15 times better than traditional LBP in L1, 2 times
better in L2, 3 times better in L3 and 5.9 times better in L4.

LBP is sensitive to noise due to blind thresholding, but by
the choice of proper threshold, sensitivity to noise in uniform
region or near uniform can be reduced. This has been tested
with different noise levels (1, 3, 5 and 7%). The input SNR 1is
calculated using the equation

IZ
ISNR = 101log,, [%} , (12)

noisy — Iorg)

where Iy is the original image and I,y is the image with
various noise levels. The output SNR is calculated using the
equation

I
Z Filt 2} , (13)
Z (Inoisy - IFilt)

where g is the filtered image obtained using either MOD-
LBP or MOD-LTP. The SNRs of MOD-LTP and MOD-LBP
over various noise levels are shown in Fig. 9.

The SNR of MOD-LTP (20 db) is more than that of MOD-
LBP (5.6 db) in the presence of 1% noise. The SNR of MOD-
LTP becomes closer to that of MOD-LBP when the noise level
present in the image is above 9%. The SNRs of MOD-LTP over
different user-specified thresholds are shown in Fig. 10. It is
seen that the SNR is high when the user-specified threshold is
in the range from 0.24 to 0.36 for all levels.

FSNR = 101og;, |:

25

20

MOD-LTP

MOD-LBP

0 ! ! !
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FIGURE 9. The SNR vs. noise level of MOD-LBP and MOD-LTP.
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FIGURE 10. SNR vs. threshold of MOD-LTP over various noise
levels.

5. CONCLUSION

This paper illustrates a method to locate relevant slices from
the MR image database. The observations reveal that local
structure is not affected much by intensity variations and MOD-
LTP with a local variance-based threshold is robust to global
illumination changes. The reweighting on moment features
leads to an increase in precision for each iteration, reaching an
optimal value following a few initial iterations as dependent
on the class. The average precision obtained after applying
the reweighting procedure is greater than that obtained with
the individual features, thereby making the retrieval attempts
using the individual features redundant. It shows that the MOD-
LTP with a proper choice of threshold is more discriminant
and less sensitive to noise in uniform or near-uniform regions.
The MOD-LTP, invariant to monotonic gray-level change
and rotation with respect to the window chosen, along with
translation and scaling invariant central moments are very useful
in identifying similar slices because of the variability in the
orientation of anatomical structures within the brain across
different subjects.
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